|     Inicio    |   |         |  |   FOROS      |  |      |      
   Elastix - VoIP B4A (Basic4Android) App inventor 2 PHP - MySQL
  Estación meteorológica B4J (Basic4Java) ADB Shell - Android Arduino
  AutoIt (Programación) Visual Basic Script (VBS) FireBase (BD autoactualizable) NodeMCU como Arduino
  Teleco - Emisora de A.M. Visual Basic Cosas de Windows Webs interesantes
T Búsqueda en este sitio:


.

Arduino en español
Circuitos con Arduino - Juan Antonio Villalpando

-- Tutorial de iniciación a Arduino --

Volver al índice del tutorial

____________________________

46.- Giroscopio. Acelerómetro. Sensor de temperatura. MPU6050. (I).

- Tutoriales sobre el giroscopio:

46.- Giroscopio. Acelerómetro. MPU6050. I2C. (I)

46A.- Estudio del Giroscopio y Acelerómetro. MPU6050. I2C. (II)

46B.- Giroscopio. Acelerómetro. MPU6050. I2C. App Inventor. (III)

46C.- Giroscopio. Acelerómetro. MPU6050. I2C. App Inventor. Centro. (IV)

---------------------------------------------------------------------------------------------------------

- El sensor enviará Aceleración (x, y, z), Temperatura, Giroscopio (x, y, z).

El chip MPU-6050 es un sensor de movimiento. Tiene acelerómetro, giroscopio de 3 ejes y sensor de temperatura.

Funciona con el principio piezoeléctrico. Al mover un elemento piezoeléctrico sufre "deformidades" que se traducen en variaciones de tensión.

Aquí puedes leer en inglés cómo funciona un acelerómetro y un giroscopio.

Al conjunto de valores que nos da el giroscopio se denomina raw.

Utiliza un ADC de 16 bits. Cada cuarto de vuelta puede manejar 16500 valores.

Se comunica con el Arduino mediante I2C.

Tiene una precisión se puede ajustar hasta 2000º/s en el giroscopio y de hasta +-16g en el acelerómetro (por defecto +-2g).

Si el pin AD0 está desconectado, la dirección I2C del módulo es 0x68.
Si el pin AD0 está a 3,3 V, la dirección I2C del módulo es 0x69

- [Consulta el tutorial: 31.- Pantalla LCD. Bus I2C, hay una aplicación para escanear y comprobar la dirección I2C, consulta si la tuya es 0x68]

Si la dirección del módulo es 0x69, actuará como señales I2C los terminales XDA y XCL. Es como tener dos giroscopios en uno.

Para comenzar a estudiarlo, dejamos el terminal AD0 sin conectar, la dirección será 0x68 y los terminales de comunicación serán SCL y SDA.

Podemos configurar el código del Arduino para que cuando esté horizontal marque 0º y cuando esté vertical marque -90º o 90 grado según el sentido de giro, es decir, detectará 180º.

La salida INT es para trabajar con Interrupciones.

Cuando el módulo está quieto en horizontal la gravedad en el eje z debe ser 16384 que corresponde a 1g (9,8 m/s2).


- Módulo con el MPU-6050. Se observa que los terminales SDA y SCL tienen una resistencia de 4K7 a positivo, como lo requiere este tipo de bus.

 

MPU-6050 Hoja de datos.

MPU-6050

Escalas:

Giroscopio rango: ± 250 500 1000 2000 °/s
Rango de aceleración: ± 2 ± 4 ± 8 ± 16g

Aquí están las librerías Wire, I2Cdev, MPU6050 y LiquidCristal_I2C que junto al IDE 1.0.6 he utilizado en este tutorial.

Para entender algo mejor el giroscopio y el acelerómetro, recomiento este tutorial:

46A.- Estudio del Giroscopio y Acelerómetro. MPU6050. I2C. (II)

- Ver también el tutorial de 46Bprocessing.htm

____________________
1.- Nuestro circuito. Código de estudio.

Vamos a realizar algo parecido al funcionamiento de los drones con el giroscopio. Imaginamos que tenemos una tabla con 4 motores, el giroscopio tratará de mantener la tabla volando en horizontal, si se inclina unos motores irán más rápidos y otros más lentos para que la tabla siempre esté en horizontal.
Si no tenemos motores, lo podemos probar con 4 diodos LED,

En internet puedes encontrar muchos tutoriales sobre el giroscopio.

Mi propuesta es la siguiente. Tenemos el Arduino UNO R3. Una pantalla LCD. El módulo con MPU6050 y 4 LED con su correspondiente resistencia limitadora.

Utilizo el IDE 1.0.6.

NOTA: puedes realizar este código simplemente conectando el Giroscopio con sus 4 cables al Arduino UNO, no hace falta ni los diodos LED ni la pantalla LCD. Se visualizarán los datos en el Serial Monitor.

- El sensor enviará Aceleración (x, y, z), Temperatura, Giroscopio (x, y, z).

Se trata de mover el módulo del giroscopio. Se visualizará en la pantalla LCD la posición de aceleraciones del módulo x, y, z.

Los valores extremos de aceleración están comprendido entre -16000 y 16000 aproximadamente. Pero los mapearemos entre -125 y 125.

Los valores extremos los puedo consultar visualizando los valores AcX, AcY y AcZ en el Serial Monitor o en la pantalla LCD.

He visualizado los valores máximos y mínimos y los he mapeado entre -125 y 125.

x=map(AcX, -15700,17100, -125,125);
y=map(AcY, -17000,15700, -125,125);
z=map(AcZ, -18000,15000, -125,125);

El valor de las aceleraciones aparecerá en la pantalla LCD (si no tienes esta pantalla, podrás realizar este montaje con los LED y visuar valores en el Serial Monitor).

Según el valor de giro unos LED iluminarán más y otros menos, imaginamos que en vez de LED son 4 motores. Si movemos el módulo para adelante, el motor delantero irá a más velocidad y el motor trasero a menos velocidad. Lo mismo ocurre si movemos el módulo lateralmente, un motor irá más rápido y otro más lento.
Si movemos en cualquier plano, unos motores irán a más velocidad y otros a menos.

Si el módulo está en horizontal, todos los motores irán a la misma velocidad.

La velocidad de los motores se realiza mediante PWM. En horizontal todos los motores tienen un DutyCicle de 50%, que corresponde a un nivel de 125 en el Arduino.
Cuando está a 90º el DutyCicle pasa a valer 100%, es decir 255 en el Arduino.
Cuadno está a 0º el DutyCicle pasa a valer 0%, es decir 0 en el Arduino.

El DutyCicle va a ser la suma de 125 y el valor de inclinación del giroscopio, este valor aumentará o disminuirá según el giro.

DutyCycle = 125;
analogWrite(LED5, DutyCycle + x);
analogWrite(LED6, DutyCycle - x);
analogWrite(LED10, DutyCycle + y);
analogWrite(LED11, DutyCycle - y);

- El sensor enviará Aceleración (x, y, z), Temperatura, Giroscopio (x, y, z).

 

- Los LED iluminarán más o menos según el giro del módulo del giroscopio.
- Los LED están conectados, mediante una resistencia limitadora de 220 ohmios, a los terminales PWM del Arduino 5, 6, 10 y 11.
- La pantalla LCD es optativa, pero facilita la comprensión.

- El Arduino UNO R3, tiene dos pares de terminales I2C, en este montaje he utilizaron A4 y A5 para el giroscopio y SDA y SCL para el LCD, pero se podría haber tomado cualquiera de las dos parejas para los dos dispositivos.

- En las características aconsejan alimentar al módulo con 3,3 V.

- Mi pantalla LCD tiene una dirección I2C de 0x3F. El módulo del giroscopio tiene una dirección I2C de 0x68.

- ¿Cómo puedo saber la dirección I2C de un dispositivo?
- Consulta el tutorial de LCD, ahí observarás un pequeño código para obtener las direcciones I2C.

- El sensor enviará Aceleración (x, y, z), Temperatura, Giroscopio (x, y, z).

- En la pantalla LCD aparecerá las Aceleraciones x, y, z.

Código
// MPU-6050 Short Example Sketch
// By Arduino User JohnChi
// August 17, 2014
// Public Domain
// Código modificado por Juan Antonio Villalpando
// Agosto 31, 2015

#include <Wire.h> 
#include <LiquidCrystal_I2C.h> 
// LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
LiquidCrystal_I2C lcd(0x3F, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

const int MPU=0x68; // I2C address of the MPU-6050
int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;

///// Modificación Juan Antonio Villalpando
///// kio4.com

int x, y, z;
#define LED5 5 // 
#define LED6 6 // 
#define LED10 10 // 
#define LED11 11 //
int DutyCycle=125;
//////////////////////////////////

void setup(){
pinMode(LED5, OUTPUT);
pinMode(LED6, OUTPUT);
pinMode(LED10, OUTPUT);
pinMode(LED11, OUTPUT);
lcd.begin(16,2);// Columnas y filas de LCD 
Wire.begin();
Wire.beginTransmission(MPU);
Wire.write(0x6B); // PWR_MGMT_1 register
Wire.write(0); // set to zero (wakes up the MPU-6050)
Wire.endTransmission(true);
Serial.begin(9600);


}
void loop(){
Wire.beginTransmission(MPU);
Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
Wire.endTransmission(false);
Wire.requestFrom(MPU,14,true); // request a total of 14 registers
AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L) 
AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
Tmp=Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
GyX=Wire.read()<<8|Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
GyY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
GyZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
Serial.print("AcX = "); Serial.print(AcX);
Serial.print(" | AcY = "); Serial.print(AcY);
Serial.print(" | AcZ = "); Serial.print(AcZ);
Serial.print(" | Tmp = "); Serial.print(Tmp/340.00+36.53); //equation for temperature in degrees C from datasheet
Serial.print(" | GyX = "); Serial.print(GyX);
Serial.print(" | GyY = "); Serial.print(GyY);
Serial.print(" | GyZ = "); Serial.println(GyZ);
delay(333);


///// Modificación Juan Antonio Villalpando
///// kio4.com 
///// Aparecen Aceleraciones x, y z
x=map(AcX, -15700,17100, -125,125); y=map(AcY, -17000,15700, -125,125); z=map(AcZ, -18000,15000, -125,125); lcd.clear(); // Borra pantalla lcd.setCursor(0,0); // Inicio del cursor lcd.print(x); lcd.setCursor(8,0); lcd.print(y); lcd.setCursor(0,1); // Siguiente renglón. lcd.print(z); analogWrite(LED5, DutyCycle + x); analogWrite(LED6, DutyCycle - x); analogWrite(LED10, DutyCycle + y); analogWrite(LED11, DutyCycle - y); }

- En el Serial monitor saldrá algo así...

¿Qué significa esta línea?

AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)

AcX está declarado como entero al principio del código.

Wire.read()<<8 lee el byte superior (Hight)
Wire.read lee el byte inferior (Low)

La tubería vertical | une a los dos bytes

Como AcX es entero, la unión de los dos bytes se expresa en entero.

Empieza a leer registros en la dirección 0x3B

Leerá 14 registros.

La z es como la x al revés. Las variaciones de orientación depende del movimiento horizontal y vertical provocada por la gravedad, si ponemos el sensor sobre la mesa y lo giramos en el plano de la mesa, el eje z no marcará ya que no tiene referencia a la gravedad.

Si no hay cambio de gravedad no hay variación de z. Para ver la orientación z se suele usar magnetómetro.

____________________
2.- Otro circuito.

- Este circuito es parecido al anterior, sin los LED. El ángulo se establece entre -90º y 90º.

- Tiene pantalla LCD.

- Si no quieres utilizar la pantalla LCD borra las líneas:

#include <LiquidCrystal_I2C.h>
// LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
LiquidCrystal_I2C lcd(0x3F, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

y las que comienzan por lcd.

- La información se visualizará en el Serial monitor.

Código
// MPU-6050 Short Example Sketch
// By Arduino User JohnChi
// August 17, 2014
// Public Domain

#include <Wire.h> 
#include <LiquidCrystal_I2C.h> 
// LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
LiquidCrystal_I2C lcd(0x3F, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

const int MPU=0x68; // I2C address of the MPU-6050
int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;
int x, y, z;
void setup(){
lcd.begin(16,2);// Columnas y filas de LCD 
Wire.begin();
Wire.beginTransmission(MPU);
Wire.write(0x6B); // PWR_MGMT_1 register
Wire.write(0); // set to zero (wakes up the MPU-6050)
Wire.endTransmission(true);
Serial.begin(9600);
}
void loop(){
Wire.beginTransmission(MPU);
Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)
Wire.endTransmission(false);
Wire.requestFrom(MPU,14,true); // request a total of 14 registers
AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L) 
AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
Tmp=Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
GyX=Wire.read()<<8|Wire.read(); // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
GyY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
GyZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
Serial.print("AcX = "); Serial.print(AcX);
Serial.print(" | AcY = "); Serial.print(AcY);
Serial.print(" | AcZ = "); Serial.print(AcZ);
Serial.print(" | Tmp = "); Serial.print(Tmp/340.00+36.53); //equation for temperature in degrees C from datasheet
Serial.print(" | GyX = "); Serial.print(GyX);
Serial.print(" | GyY = "); Serial.print(GyY);
Serial.print(" | GyZ = "); Serial.println(GyZ);
delay(333);
x=map(AcX, -15700,17100, -90,90);
y=map(AcY, -17000,15700, -90,90);
z=map(AcZ, -18000,15000, -90,90);
lcd.clear(); // Borra pantalla
lcd.setCursor(0,0); // Inicio del cursor
lcd.print(x); lcd.setCursor(8,0); lcd.print(y); 
lcd.setCursor(0,1); // Siguiente renglón.
lcd.print(z);

}

- El sensor enviará Aceleración (x, y, z), Temperatura, Giroscopio (x, y, z).

- En el Serial monitor saldrá algo así...

AcX = 15080 | AcY = 7436 | AcZ = -2820 | Tmp = 30.88 | GyX = -240 | GyY = -129 | GyZ = -290
AcX = 15048 | AcY = 7548 | AcZ = -2980 | Tmp = 30.98 | GyX = -284 | GyY = 43 | GyZ = 343
AcX = 14964 | AcY = 7496 | AcZ = -3032 | Tmp = 31.02 | GyX = 558 | GyY = 250 | GyZ = -613
AcX = 14836 | AcY = 7784 | AcZ = -2908 | Tmp = 30.84 | GyX = -201 | GyY = -182 | GyZ = -698

____________________
3.- Otro código.

- Con las librerías

#include "I2Cdev.h"
#include "MPU6050.h"

y pantalla LCD.

Mapeado a -125 y 125.
Puedes cambiar el mapeado a -90 y 90.

Código
// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class
// 10/7/2011 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
//     2011-10-07 - initial release

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2011 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#include "Wire.h"
#include <LiquidCrystal_I2C.h> 
// LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
LiquidCrystal_I2C lcd(0x3F, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"
#include "MPU6050.h"

// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 accelgyro;

int16_t ax, ay, az;
int16_t gx, gy, gz;

#define LED_PIN 13
bool blinkState = false;
int x, y, z;

void setup() {
lcd.begin(16,2);// Columnas y filas de LCD 
// join I2C bus (I2Cdev library doesn't do this automatically)
Wire.begin();

// initialize serial communication
// (38400 chosen because it works as well at 8MHz as it does at 16MHz, but
// it's really up to you depending on your project)
Serial.begin(38400);

// initialize device
Serial.println("Initializing I2C devices...");
accelgyro.initialize();

// verify connection
Serial.println("Testing device connections...");
Serial.println(accelgyro.testConnection() ? "MPU6050 connection successful" : "MPU6050 connection failed");

// configure Arduino LED for
pinMode(LED_PIN, OUTPUT);
}

void loop() {
// read raw accel/gyro measurements from device
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

// these methods (and a few others) are also available
//accelgyro.getAcceleration(&ax, &ay, &az);
//accelgyro.getRotation(&gx, &gy, &gz);

// display tab-separated accel/gyro x/y/z values
Serial.print("a/g:\t");
Serial.print(ax); Serial.print("\t");
Serial.print(ay); Serial.print("\t");
Serial.print(az); Serial.print("\t");
Serial.print(gx); Serial.print("\t");
Serial.print(gy); Serial.print("\t");
Serial.println(gz);

// blink LED to indicate activity
blinkState = !blinkState;
digitalWrite(LED_PIN, blinkState);

delay(333); 
x=map(ax, -15700,17100, -125,125);
y=map(ay, -17000,15700, -125,125);
z=map(az, -18000,15000, -125,125);
lcd.clear(); // Borra pantalla
lcd.setCursor(0,0); // Inicio del cursor
lcd.print(x); lcd.setCursor(8,0); lcd.print(y); 
lcd.setCursor(0,1); // Siguiente renglón.
lcd.print(z);
}

____________________
4.- Otro código.

- Código de Krodal.

Código
// MPU-6050 Accelerometer + Gyro
// -----------------------------
//
// By arduino.cc user "Krodal".
//
// June 2012
//      first version
// July 2013
//      The 'int' in the union for the x,y,z
//      changed into int16_t to be compatible
//      with Arduino Due.
//
// Open Source / Public Domain
//
// Using Arduino 1.0.1
// It will not work with an older version,
// since Wire.endTransmission() uses a parameter
// to hold or release the I2C bus.
//
// Documentation:
// - The InvenSense documents:
//   - "MPU-6000 and MPU-6050 Product Specification",
//     PS-MPU-6000A.pdf
//   - "MPU-6000 and MPU-6050 Register Map and Descriptions",
//     RM-MPU-6000A.pdf or RS-MPU-6000A.pdf
//   - "MPU-6000/MPU-6050 9-Axis Evaluation Board User Guide"
//     AN-MPU-6000EVB.pdf
//
// The accuracy is 16-bits.
//
// Temperature sensor from -40 to +85 degrees Celsius
//   340 per degrees, -512 at 35 degrees.
//
// At power-up, all registers are zero, except these two:
//      Register 0x6B (PWR_MGMT_2) = 0x40  (I read zero).
//      Register 0x75 (WHO_AM_I)   = 0x68.
//
 
#include <Wire.h>
 
 
// The name of the sensor is "MPU-6050".
// For program code, I omit the '-',
// therefor I use the name "MPU6050....".
 
 
// Register names according to the datasheet.
// According to the InvenSense document
// "MPU-6000 and MPU-6050 Register Map
// and Descriptions Revision 3.2", there are no registers
// at 0x02 ... 0x18, but according other information
// the registers in that unknown area are for gain
// and offsets.
//
#define MPU6050_AUX_VDDIO          0x01   // R/W
#define MPU6050_SMPLRT_DIV         0x19   // R/W
#define MPU6050_CONFIG             0x1A   // R/W
#define MPU6050_GYRO_CONFIG        0x1B   // R/W
#define MPU6050_ACCEL_CONFIG       0x1C   // R/W
#define MPU6050_FF_THR             0x1D   // R/W
#define MPU6050_FF_DUR             0x1E   // R/W
#define MPU6050_MOT_THR            0x1F   // R/W
#define MPU6050_MOT_DUR            0x20   // R/W
#define MPU6050_ZRMOT_THR          0x21   // R/W
#define MPU6050_ZRMOT_DUR          0x22   // R/W
#define MPU6050_FIFO_EN            0x23   // R/W
#define MPU6050_I2C_MST_CTRL       0x24   // R/W
#define MPU6050_I2C_SLV0_ADDR      0x25   // R/W
#define MPU6050_I2C_SLV0_REG       0x26   // R/W
#define MPU6050_I2C_SLV0_CTRL      0x27   // R/W
#define MPU6050_I2C_SLV1_ADDR      0x28   // R/W
#define MPU6050_I2C_SLV1_REG       0x29   // R/W
#define MPU6050_I2C_SLV1_CTRL      0x2A   // R/W
#define MPU6050_I2C_SLV2_ADDR      0x2B   // R/W
#define MPU6050_I2C_SLV2_REG       0x2C   // R/W
#define MPU6050_I2C_SLV2_CTRL      0x2D   // R/W
#define MPU6050_I2C_SLV3_ADDR      0x2E   // R/W
#define MPU6050_I2C_SLV3_REG       0x2F   // R/W
#define MPU6050_I2C_SLV3_CTRL      0x30   // R/W
#define MPU6050_I2C_SLV4_ADDR      0x31   // R/W
#define MPU6050_I2C_SLV4_REG       0x32   // R/W
#define MPU6050_I2C_SLV4_DO        0x33   // R/W
#define MPU6050_I2C_SLV4_CTRL      0x34   // R/W
#define MPU6050_I2C_SLV4_DI        0x35   // R  
#define MPU6050_I2C_MST_STATUS     0x36   // R
#define MPU6050_INT_PIN_CFG        0x37   // R/W
#define MPU6050_INT_ENABLE         0x38   // R/W
#define MPU6050_INT_STATUS         0x3A   // R  
#define MPU6050_ACCEL_XOUT_H       0x3B   // R  
#define MPU6050_ACCEL_XOUT_L       0x3C   // R  
#define MPU6050_ACCEL_YOUT_H       0x3D   // R  
#define MPU6050_ACCEL_YOUT_L       0x3E   // R  
#define MPU6050_ACCEL_ZOUT_H       0x3F   // R  
#define MPU6050_ACCEL_ZOUT_L       0x40   // R  
#define MPU6050_TEMP_OUT_H         0x41   // R  
#define MPU6050_TEMP_OUT_L         0x42   // R  
#define MPU6050_GYRO_XOUT_H        0x43   // R  
#define MPU6050_GYRO_XOUT_L        0x44   // R  
#define MPU6050_GYRO_YOUT_H        0x45   // R  
#define MPU6050_GYRO_YOUT_L        0x46   // R  
#define MPU6050_GYRO_ZOUT_H        0x47   // R  
#define MPU6050_GYRO_ZOUT_L        0x48   // R  
#define MPU6050_EXT_SENS_DATA_00   0x49   // R  
#define MPU6050_EXT_SENS_DATA_01   0x4A   // R  
#define MPU6050_EXT_SENS_DATA_02   0x4B   // R  
#define MPU6050_EXT_SENS_DATA_03   0x4C   // R  
#define MPU6050_EXT_SENS_DATA_04   0x4D   // R  
#define MPU6050_EXT_SENS_DATA_05   0x4E   // R  
#define MPU6050_EXT_SENS_DATA_06   0x4F   // R  
#define MPU6050_EXT_SENS_DATA_07   0x50   // R  
#define MPU6050_EXT_SENS_DATA_08   0x51   // R  
#define MPU6050_EXT_SENS_DATA_09   0x52   // R  
#define MPU6050_EXT_SENS_DATA_10   0x53   // R  
#define MPU6050_EXT_SENS_DATA_11   0x54   // R  
#define MPU6050_EXT_SENS_DATA_12   0x55   // R  
#define MPU6050_EXT_SENS_DATA_13   0x56   // R  
#define MPU6050_EXT_SENS_DATA_14   0x57   // R  
#define MPU6050_EXT_SENS_DATA_15   0x58   // R  
#define MPU6050_EXT_SENS_DATA_16   0x59   // R  
#define MPU6050_EXT_SENS_DATA_17   0x5A   // R  
#define MPU6050_EXT_SENS_DATA_18   0x5B   // R  
#define MPU6050_EXT_SENS_DATA_19   0x5C   // R  
#define MPU6050_EXT_SENS_DATA_20   0x5D   // R  
#define MPU6050_EXT_SENS_DATA_21   0x5E   // R  
#define MPU6050_EXT_SENS_DATA_22   0x5F   // R  
#define MPU6050_EXT_SENS_DATA_23   0x60   // R  
#define MPU6050_MOT_DETECT_STATUS  0x61   // R  
#define MPU6050_I2C_SLV0_DO        0x63   // R/W
#define MPU6050_I2C_SLV1_DO        0x64   // R/W
#define MPU6050_I2C_SLV2_DO        0x65   // R/W
#define MPU6050_I2C_SLV3_DO        0x66   // R/W
#define MPU6050_I2C_MST_DELAY_CTRL 0x67   // R/W
#define MPU6050_SIGNAL_PATH_RESET  0x68   // R/W
#define MPU6050_MOT_DETECT_CTRL    0x69   // R/W
#define MPU6050_USER_CTRL          0x6A   // R/W
#define MPU6050_PWR_MGMT_1         0x6B   // R/W
#define MPU6050_PWR_MGMT_2         0x6C   // R/W
#define MPU6050_FIFO_COUNTH        0x72   // R/W
#define MPU6050_FIFO_COUNTL        0x73   // R/W
#define MPU6050_FIFO_R_W           0x74   // R/W
#define MPU6050_WHO_AM_I           0x75   // R
 
 
// Defines for the bits, to be able to change
// between bit number and binary definition.
// By using the bit number, programming the sensor
// is like programming the AVR microcontroller.
// But instead of using "(1<<X)", or "_BV(X)",
// the Arduino "bit(X)" is used.
#define MPU6050_D0 0
#define MPU6050_D1 1
#define MPU6050_D2 2
#define MPU6050_D3 3
#define MPU6050_D4 4
#define MPU6050_D5 5
#define MPU6050_D6 6
#define MPU6050_D7 7
 
// AUX_VDDIO Register
#define MPU6050_AUX_VDDIO MPU6050_D7  // I2C high: 1=VDD, 0=VLOGIC
 
// CONFIG Register
// DLPF is Digital Low Pass Filter for both gyro and accelerometers.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DLPF_CFG0     MPU6050_D0
#define MPU6050_DLPF_CFG1     MPU6050_D1
#define MPU6050_DLPF_CFG2     MPU6050_D2
#define MPU6050_EXT_SYNC_SET0 MPU6050_D3
#define MPU6050_EXT_SYNC_SET1 MPU6050_D4
#define MPU6050_EXT_SYNC_SET2 MPU6050_D5
 
// Combined definitions for the EXT_SYNC_SET values
#define MPU6050_EXT_SYNC_SET_0 (0)
#define MPU6050_EXT_SYNC_SET_1 (bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_2 (bit(MPU6050_EXT_SYNC_SET1))
#define MPU6050_EXT_SYNC_SET_3 (bit(MPU6050_EXT_SYNC_SET1)|bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_4 (bit(MPU6050_EXT_SYNC_SET2))
#define MPU6050_EXT_SYNC_SET_5 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_6 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET1))
#define MPU6050_EXT_SYNC_SET_7 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET1)|bit(MPU6050_EXT_SYNC_SET0))
 
// Alternative names for the combined definitions.
#define MPU6050_EXT_SYNC_DISABLED     MPU6050_EXT_SYNC_SET_0
#define MPU6050_EXT_SYNC_TEMP_OUT_L   MPU6050_EXT_SYNC_SET_1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L  MPU6050_EXT_SYNC_SET_2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L  MPU6050_EXT_SYNC_SET_3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L  MPU6050_EXT_SYNC_SET_4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L MPU6050_EXT_SYNC_SET_5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L MPU6050_EXT_SYNC_SET_6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L MPU6050_EXT_SYNC_SET_7
 
// Combined definitions for the DLPF_CFG values
#define MPU6050_DLPF_CFG_0 (0)
#define MPU6050_DLPF_CFG_1 (bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_2 (bit(MPU6050_DLPF_CFG1))
#define MPU6050_DLPF_CFG_3 (bit(MPU6050_DLPF_CFG1)|bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_4 (bit(MPU6050_DLPF_CFG2))
#define MPU6050_DLPF_CFG_5 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_6 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG1))
#define MPU6050_DLPF_CFG_7 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG1)|bit(MPU6050_DLPF_CFG0))
 
// Alternative names for the combined definitions
// This name uses the bandwidth (Hz) for the accelometer,
// for the gyro the bandwidth is almost the same.
#define MPU6050_DLPF_260HZ    MPU6050_DLPF_CFG_0
#define MPU6050_DLPF_184HZ    MPU6050_DLPF_CFG_1
#define MPU6050_DLPF_94HZ     MPU6050_DLPF_CFG_2
#define MPU6050_DLPF_44HZ     MPU6050_DLPF_CFG_3
#define MPU6050_DLPF_21HZ     MPU6050_DLPF_CFG_4
#define MPU6050_DLPF_10HZ     MPU6050_DLPF_CFG_5
#define MPU6050_DLPF_5HZ      MPU6050_DLPF_CFG_6
#define MPU6050_DLPF_RESERVED MPU6050_DLPF_CFG_7
 
// GYRO_CONFIG Register
// The XG_ST, YG_ST, ZG_ST are bits for selftest.
// The FS_SEL sets the range for the gyro.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_FS_SEL0 MPU6050_D3
#define MPU6050_FS_SEL1 MPU6050_D4
#define MPU6050_ZG_ST   MPU6050_D5
#define MPU6050_YG_ST   MPU6050_D6
#define MPU6050_XG_ST   MPU6050_D7
 
// Combined definitions for the FS_SEL values
#define MPU6050_FS_SEL_0 (0)
#define MPU6050_FS_SEL_1 (bit(MPU6050_FS_SEL0))
#define MPU6050_FS_SEL_2 (bit(MPU6050_FS_SEL1))
#define MPU6050_FS_SEL_3 (bit(MPU6050_FS_SEL1)|bit(MPU6050_FS_SEL0))
 
// Alternative names for the combined definitions
// The name uses the range in degrees per second.
#define MPU6050_FS_SEL_250  MPU6050_FS_SEL_0
#define MPU6050_FS_SEL_500  MPU6050_FS_SEL_1
#define MPU6050_FS_SEL_1000 MPU6050_FS_SEL_2
#define MPU6050_FS_SEL_2000 MPU6050_FS_SEL_3
 
// ACCEL_CONFIG Register
// The XA_ST, YA_ST, ZA_ST are bits for selftest.
// The AFS_SEL sets the range for the accelerometer.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_ACCEL_HPF0 MPU6050_D0
#define MPU6050_ACCEL_HPF1 MPU6050_D1
#define MPU6050_ACCEL_HPF2 MPU6050_D2
#define MPU6050_AFS_SEL0   MPU6050_D3
#define MPU6050_AFS_SEL1   MPU6050_D4
#define MPU6050_ZA_ST      MPU6050_D5
#define MPU6050_YA_ST      MPU6050_D6
#define MPU6050_XA_ST      MPU6050_D7
 
// Combined definitions for the ACCEL_HPF values
#define MPU6050_ACCEL_HPF_0 (0)
#define MPU6050_ACCEL_HPF_1 (bit(MPU6050_ACCEL_HPF0))
#define MPU6050_ACCEL_HPF_2 (bit(MPU6050_ACCEL_HPF1))
#define MPU6050_ACCEL_HPF_3 (bit(MPU6050_ACCEL_HPF1)|bit(MPU6050_ACCEL_HPF0))
#define MPU6050_ACCEL_HPF_4 (bit(MPU6050_ACCEL_HPF2))
#define MPU6050_ACCEL_HPF_7 (bit(MPU6050_ACCEL_HPF2)|bit(MPU6050_ACCEL_HPF1)|bit(MPU6050_ACCEL_HPF0))
 
// Alternative names for the combined definitions
// The name uses the Cut-off frequency.
#define MPU6050_ACCEL_HPF_RESET  MPU6050_ACCEL_HPF_0
#define MPU6050_ACCEL_HPF_5HZ    MPU6050_ACCEL_HPF_1
#define MPU6050_ACCEL_HPF_2_5HZ  MPU6050_ACCEL_HPF_2
#define MPU6050_ACCEL_HPF_1_25HZ MPU6050_ACCEL_HPF_3
#define MPU6050_ACCEL_HPF_0_63HZ MPU6050_ACCEL_HPF_4
#define MPU6050_ACCEL_HPF_HOLD   MPU6050_ACCEL_HPF_7
 
// Combined definitions for the AFS_SEL values
#define MPU6050_AFS_SEL_0 (0)
#define MPU6050_AFS_SEL_1 (bit(MPU6050_AFS_SEL0))
#define MPU6050_AFS_SEL_2 (bit(MPU6050_AFS_SEL1))
#define MPU6050_AFS_SEL_3 (bit(MPU6050_AFS_SEL1)|bit(MPU6050_AFS_SEL0))
 
// Alternative names for the combined definitions
// The name uses the full scale range for the accelerometer.
#define MPU6050_AFS_SEL_2G  MPU6050_AFS_SEL_0
#define MPU6050_AFS_SEL_4G  MPU6050_AFS_SEL_1
#define MPU6050_AFS_SEL_8G  MPU6050_AFS_SEL_2
#define MPU6050_AFS_SEL_16G MPU6050_AFS_SEL_3
 
// FIFO_EN Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_SLV0_FIFO_EN  MPU6050_D0
#define MPU6050_SLV1_FIFO_EN  MPU6050_D1
#define MPU6050_SLV2_FIFO_EN  MPU6050_D2
#define MPU6050_ACCEL_FIFO_EN MPU6050_D3
#define MPU6050_ZG_FIFO_EN    MPU6050_D4
#define MPU6050_YG_FIFO_EN    MPU6050_D5
#define MPU6050_XG_FIFO_EN    MPU6050_D6
#define MPU6050_TEMP_FIFO_EN  MPU6050_D7
 
// I2C_MST_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_MST_CLK0  MPU6050_D0
#define MPU6050_I2C_MST_CLK1  MPU6050_D1
#define MPU6050_I2C_MST_CLK2  MPU6050_D2
#define MPU6050_I2C_MST_CLK3  MPU6050_D3
#define MPU6050_I2C_MST_P_NSR MPU6050_D4
#define MPU6050_SLV_3_FIFO_EN MPU6050_D5
#define MPU6050_WAIT_FOR_ES   MPU6050_D6
#define MPU6050_MULT_MST_EN   MPU6050_D7
 
// Combined definitions for the I2C_MST_CLK
#define MPU6050_I2C_MST_CLK_0 (0)
#define MPU6050_I2C_MST_CLK_1  (bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_2  (bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_3  (bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_4  (bit(MPU6050_I2C_MST_CLK2))
#define MPU6050_I2C_MST_CLK_5  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_6  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_7  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_8  (bit(MPU6050_I2C_MST_CLK3))
#define MPU6050_I2C_MST_CLK_9  (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_10 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_11 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_12 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2))
#define MPU6050_I2C_MST_CLK_13 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_14 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_15 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
 
// Alternative names for the combined definitions
// The names uses I2C Master Clock Speed in kHz.
#define MPU6050_I2C_MST_CLK_348KHZ MPU6050_I2C_MST_CLK_0
#define MPU6050_I2C_MST_CLK_333KHZ MPU6050_I2C_MST_CLK_1
#define MPU6050_I2C_MST_CLK_320KHZ MPU6050_I2C_MST_CLK_2
#define MPU6050_I2C_MST_CLK_308KHZ MPU6050_I2C_MST_CLK_3
#define MPU6050_I2C_MST_CLK_296KHZ MPU6050_I2C_MST_CLK_4
#define MPU6050_I2C_MST_CLK_286KHZ MPU6050_I2C_MST_CLK_5
#define MPU6050_I2C_MST_CLK_276KHZ MPU6050_I2C_MST_CLK_6
#define MPU6050_I2C_MST_CLK_267KHZ MPU6050_I2C_MST_CLK_7
#define MPU6050_I2C_MST_CLK_258KHZ MPU6050_I2C_MST_CLK_8
#define MPU6050_I2C_MST_CLK_500KHZ MPU6050_I2C_MST_CLK_9
#define MPU6050_I2C_MST_CLK_471KHZ MPU6050_I2C_MST_CLK_10
#define MPU6050_I2C_MST_CLK_444KHZ MPU6050_I2C_MST_CLK_11
#define MPU6050_I2C_MST_CLK_421KHZ MPU6050_I2C_MST_CLK_12
#define MPU6050_I2C_MST_CLK_400KHZ MPU6050_I2C_MST_CLK_13
#define MPU6050_I2C_MST_CLK_381KHZ MPU6050_I2C_MST_CLK_14
#define MPU6050_I2C_MST_CLK_364KHZ MPU6050_I2C_MST_CLK_15
 
// I2C_SLV0_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_RW MPU6050_D7
 
// I2C_SLV0_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV0_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV0_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV0_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV0_GRP     MPU6050_D4
#define MPU6050_I2C_SLV0_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV0_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV0_EN      MPU6050_D7
 
// A mask for the length
#define MPU6050_I2C_SLV0_LEN_MASK 0x0F
 
// I2C_SLV1_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV1_RW MPU6050_D7
 
// I2C_SLV1_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV1_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV1_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV1_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV1_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV1_GRP     MPU6050_D4
#define MPU6050_I2C_SLV1_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV1_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV1_EN      MPU6050_D7
 
// A mask for the length
#define MPU6050_I2C_SLV1_LEN_MASK 0x0F
 
// I2C_SLV2_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV2_RW MPU6050_D7
 
// I2C_SLV2_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV2_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV2_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV2_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV2_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV2_GRP     MPU6050_D4
#define MPU6050_I2C_SLV2_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV2_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV2_EN      MPU6050_D7
 
// A mask for the length
#define MPU6050_I2C_SLV2_LEN_MASK 0x0F
 
// I2C_SLV3_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV3_RW MPU6050_D7
 
// I2C_SLV3_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV3_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV3_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV3_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV3_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV3_GRP     MPU6050_D4
#define MPU6050_I2C_SLV3_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV3_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV3_EN      MPU6050_D7
 
// A mask for the length
#define MPU6050_I2C_SLV3_LEN_MASK 0x0F
 
// I2C_SLV4_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV4_RW MPU6050_D7
 
// I2C_SLV4_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_MST_DLY0     MPU6050_D0
#define MPU6050_I2C_MST_DLY1     MPU6050_D1
#define MPU6050_I2C_MST_DLY2     MPU6050_D2
#define MPU6050_I2C_MST_DLY3     MPU6050_D3
#define MPU6050_I2C_MST_DLY4     MPU6050_D4
#define MPU6050_I2C_SLV4_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV4_INT_EN  MPU6050_D6
#define MPU6050_I2C_SLV4_EN      MPU6050_D7
 
// A mask for the delay
#define MPU6050_I2C_MST_DLY_MASK 0x1F
 
// I2C_MST_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_NACK MPU6050_D0
#define MPU6050_I2C_SLV1_NACK MPU6050_D1
#define MPU6050_I2C_SLV2_NACK MPU6050_D2
#define MPU6050_I2C_SLV3_NACK MPU6050_D3
#define MPU6050_I2C_SLV4_NACK MPU6050_D4
#define MPU6050_I2C_LOST_ARB  MPU6050_D5
#define MPU6050_I2C_SLV4_DONE MPU6050_D6
#define MPU6050_PASS_THROUGH  MPU6050_D7
 
// I2C_PIN_CFG Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_CLKOUT_EN       MPU6050_D0
#define MPU6050_I2C_BYPASS_EN   MPU6050_D1
#define MPU6050_FSYNC_INT_EN    MPU6050_D2
#define MPU6050_FSYNC_INT_LEVEL MPU6050_D3
#define MPU6050_INT_RD_CLEAR    MPU6050_D4
#define MPU6050_LATCH_INT_EN    MPU6050_D5
#define MPU6050_INT_OPEN        MPU6050_D6
#define MPU6050_INT_LEVEL       MPU6050_D7
 
// INT_ENABLE Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DATA_RDY_EN    MPU6050_D0
#define MPU6050_I2C_MST_INT_EN MPU6050_D3
#define MPU6050_FIFO_OFLOW_EN  MPU6050_D4
#define MPU6050_ZMOT_EN        MPU6050_D5
#define MPU6050_MOT_EN         MPU6050_D6
#define MPU6050_FF_EN          MPU6050_D7
 
// INT_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DATA_RDY_INT   MPU6050_D0
#define MPU6050_I2C_MST_INT    MPU6050_D3
#define MPU6050_FIFO_OFLOW_INT MPU6050_D4
#define MPU6050_ZMOT_INT       MPU6050_D5
#define MPU6050_MOT_INT        MPU6050_D6
#define MPU6050_FF_INT         MPU6050_D7
 
// MOT_DETECT_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_MOT_ZRMOT MPU6050_D0
#define MPU6050_MOT_ZPOS  MPU6050_D2
#define MPU6050_MOT_ZNEG  MPU6050_D3
#define MPU6050_MOT_YPOS  MPU6050_D4
#define MPU6050_MOT_YNEG  MPU6050_D5
#define MPU6050_MOT_XPOS  MPU6050_D6
#define MPU6050_MOT_XNEG  MPU6050_D7
 
// IC2_MST_DELAY_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_DLY_EN MPU6050_D0
#define MPU6050_I2C_SLV1_DLY_EN MPU6050_D1
#define MPU6050_I2C_SLV2_DLY_EN MPU6050_D2
#define MPU6050_I2C_SLV3_DLY_EN MPU6050_D3
#define MPU6050_I2C_SLV4_DLY_EN MPU6050_D4
#define MPU6050_DELAY_ES_SHADOW MPU6050_D7
 
// SIGNAL_PATH_RESET Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_TEMP_RESET  MPU6050_D0
#define MPU6050_ACCEL_RESET MPU6050_D1
#define MPU6050_GYRO_RESET  MPU6050_D2
 
// MOT_DETECT_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_MOT_COUNT0      MPU6050_D0
#define MPU6050_MOT_COUNT1      MPU6050_D1
#define MPU6050_FF_COUNT0       MPU6050_D2
#define MPU6050_FF_COUNT1       MPU6050_D3
#define MPU6050_ACCEL_ON_DELAY0 MPU6050_D4
#define MPU6050_ACCEL_ON_DELAY1 MPU6050_D5
 
// Combined definitions for the MOT_COUNT
#define MPU6050_MOT_COUNT_0 (0)
#define MPU6050_MOT_COUNT_1 (bit(MPU6050_MOT_COUNT0))
#define MPU6050_MOT_COUNT_2 (bit(MPU6050_MOT_COUNT1))
#define MPU6050_MOT_COUNT_3 (bit(MPU6050_MOT_COUNT1)|bit(MPU6050_MOT_COUNT0))
 
// Alternative names for the combined definitions
#define MPU6050_MOT_COUNT_RESET MPU6050_MOT_COUNT_0
 
// Combined definitions for the FF_COUNT
#define MPU6050_FF_COUNT_0 (0)
#define MPU6050_FF_COUNT_1 (bit(MPU6050_FF_COUNT0))
#define MPU6050_FF_COUNT_2 (bit(MPU6050_FF_COUNT1))
#define MPU6050_FF_COUNT_3 (bit(MPU6050_FF_COUNT1)|bit(MPU6050_FF_COUNT0))
 
// Alternative names for the combined definitions
#define MPU6050_FF_COUNT_RESET MPU6050_FF_COUNT_0
 
// Combined definitions for the ACCEL_ON_DELAY
#define MPU6050_ACCEL_ON_DELAY_0 (0)
#define MPU6050_ACCEL_ON_DELAY_1 (bit(MPU6050_ACCEL_ON_DELAY0))
#define MPU6050_ACCEL_ON_DELAY_2 (bit(MPU6050_ACCEL_ON_DELAY1))
#define MPU6050_ACCEL_ON_DELAY_3 (bit(MPU6050_ACCEL_ON_DELAY1)|bit(MPU6050_ACCEL_ON_DELAY0))
 
// Alternative names for the ACCEL_ON_DELAY
#define MPU6050_ACCEL_ON_DELAY_0MS MPU6050_ACCEL_ON_DELAY_0
#define MPU6050_ACCEL_ON_DELAY_1MS MPU6050_ACCEL_ON_DELAY_1
#define MPU6050_ACCEL_ON_DELAY_2MS MPU6050_ACCEL_ON_DELAY_2
#define MPU6050_ACCEL_ON_DELAY_3MS MPU6050_ACCEL_ON_DELAY_3
 
// USER_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_SIG_COND_RESET MPU6050_D0
#define MPU6050_I2C_MST_RESET  MPU6050_D1
#define MPU6050_FIFO_RESET     MPU6050_D2
#define MPU6050_I2C_IF_DIS     MPU6050_D4   // must be 0 for MPU-6050
#define MPU6050_I2C_MST_EN     MPU6050_D5
#define MPU6050_FIFO_EN        MPU6050_D6
 
// PWR_MGMT_1 Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_CLKSEL0      MPU6050_D0
#define MPU6050_CLKSEL1      MPU6050_D1
#define MPU6050_CLKSEL2      MPU6050_D2
#define MPU6050_TEMP_DIS     MPU6050_D3    // 1: disable temperature sensor
#define MPU6050_CYCLE        MPU6050_D5    // 1: sample and sleep
#define MPU6050_SLEEP        MPU6050_D6    // 1: sleep mode
#define MPU6050_DEVICE_RESET MPU6050_D7    // 1: reset to default values
 
// Combined definitions for the CLKSEL
#define MPU6050_CLKSEL_0 (0)
#define MPU6050_CLKSEL_1 (bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_2 (bit(MPU6050_CLKSEL1))
#define MPU6050_CLKSEL_3 (bit(MPU6050_CLKSEL1)|bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_4 (bit(MPU6050_CLKSEL2))
#define MPU6050_CLKSEL_5 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_6 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL1))
#define MPU6050_CLKSEL_7 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL1)|bit(MPU6050_CLKSEL0))
 
// Alternative names for the combined definitions
#define MPU6050_CLKSEL_INTERNAL    MPU6050_CLKSEL_0
#define MPU6050_CLKSEL_X           MPU6050_CLKSEL_1
#define MPU6050_CLKSEL_Y           MPU6050_CLKSEL_2
#define MPU6050_CLKSEL_Z           MPU6050_CLKSEL_3
#define MPU6050_CLKSEL_EXT_32KHZ   MPU6050_CLKSEL_4
#define MPU6050_CLKSEL_EXT_19_2MHZ MPU6050_CLKSEL_5
#define MPU6050_CLKSEL_RESERVED    MPU6050_CLKSEL_6
#define MPU6050_CLKSEL_STOP        MPU6050_CLKSEL_7
 
// PWR_MGMT_2 Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_STBY_ZG       MPU6050_D0
#define MPU6050_STBY_YG       MPU6050_D1
#define MPU6050_STBY_XG       MPU6050_D2
#define MPU6050_STBY_ZA       MPU6050_D3
#define MPU6050_STBY_YA       MPU6050_D4
#define MPU6050_STBY_XA       MPU6050_D5
#define MPU6050_LP_WAKE_CTRL0 MPU6050_D6
#define MPU6050_LP_WAKE_CTRL1 MPU6050_D7
 
// Combined definitions for the LP_WAKE_CTRL
#define MPU6050_LP_WAKE_CTRL_0 (0)
#define MPU6050_LP_WAKE_CTRL_1 (bit(MPU6050_LP_WAKE_CTRL0))
#define MPU6050_LP_WAKE_CTRL_2 (bit(MPU6050_LP_WAKE_CTRL1))
#define MPU6050_LP_WAKE_CTRL_3 (bit(MPU6050_LP_WAKE_CTRL1)|bit(MPU6050_LP_WAKE_CTRL0))
 
// Alternative names for the combined definitions
// The names uses the Wake-up Frequency.
#define MPU6050_LP_WAKE_1_25HZ MPU6050_LP_WAKE_CTRL_0
#define MPU6050_LP_WAKE_2_5HZ  MPU6050_LP_WAKE_CTRL_1
#define MPU6050_LP_WAKE_5HZ    MPU6050_LP_WAKE_CTRL_2
#define MPU6050_LP_WAKE_10HZ   MPU6050_LP_WAKE_CTRL_3
 
 
// Default I2C address for the MPU-6050 is 0x68.
// But only if the AD0 pin is low.
// Some sensor boards have AD0 high, and the
// I2C address thus becomes 0x69.
#define MPU6050_I2C_ADDRESS 0x68
 
 
// Declaring an union for the registers and the axis values.
// The byte order does not match the byte order of
// the compiler and AVR chip.
// The AVR chip (on the Arduino board) has the Low Byte
// at the lower address.
// But the MPU-6050 has a different order: High Byte at
// lower address, so that has to be corrected.
// The register part "reg" is only used internally,
// and are swapped in code.
typedef union accel_t_gyro_union
{
  struct
  {
    uint8_t x_accel_h;
    uint8_t x_accel_l;
    uint8_t y_accel_h;
    uint8_t y_accel_l;
    uint8_t z_accel_h;
    uint8_t z_accel_l;
    uint8_t t_h;
    uint8_t t_l;
    uint8_t x_gyro_h;
    uint8_t x_gyro_l;
    uint8_t y_gyro_h;
    uint8_t y_gyro_l;
    uint8_t z_gyro_h;
    uint8_t z_gyro_l;
  } reg;
  struct
  {
    int16_t x_accel;
    int16_t y_accel;
    int16_t z_accel;
    int16_t temperature;
    int16_t x_gyro;
    int16_t y_gyro;
    int16_t z_gyro;
  } value;
};
 
 
void setup()
{      
  int error;
  uint8_t c;
 
 
  Serial.begin(9600);
  Serial.println(F("InvenSense MPU-6050"));
  Serial.println(F("June 2012"));
 
  // Initialize the 'Wire' class for the I2C-bus.
  Wire.begin();
 
 
  // default at power-up:
  //    Gyro at 250 degrees second
  //    Acceleration at 2g
  //    Clock source at internal 8MHz
  //    The device is in sleep mode.
  //
 
  error = MPU6050_read (MPU6050_WHO_AM_I, &c, 1);
  Serial.print(F("WHO_AM_I : "));
  Serial.print(c,HEX);
  Serial.print(F(", error = "));
  Serial.println(error,DEC);
 
  // According to the datasheet, the 'sleep' bit
  // should read a '1'.
  // That bit has to be cleared, since the sensor
  // is in sleep mode at power-up.
  error = MPU6050_read (MPU6050_PWR_MGMT_1, &c, 1);
  Serial.print(F("PWR_MGMT_1 : "));
  Serial.print(c,HEX);
  Serial.print(F(", error = "));
  Serial.println(error,DEC);
 
 
  // Clear the 'sleep' bit to start the sensor.
  MPU6050_write_reg (MPU6050_PWR_MGMT_1, 0);
}
 
 
void loop()
{
  int error;
  double dT;
  accel_t_gyro_union accel_t_gyro;
 
 
  Serial.println(F(""));
  Serial.println(F("MPU-6050"));
 
  // Read the raw values.
  // Read 14 bytes at once,
  // containing acceleration, temperature and gyro.
  // With the default settings of the MPU-6050,
  // there is no filter enabled, and the values
  // are not very stable.
  error = MPU6050_read (MPU6050_ACCEL_XOUT_H, (uint8_t *) &accel_t_gyro, sizeof(accel_t_gyro));
  Serial.print(F("Read accel, temp and gyro, error = "));
  Serial.println(error,DEC);
 
 
  // Swap all high and low bytes.
  // After this, the registers values are swapped,
  // so the structure name like x_accel_l does no
  // longer contain the lower byte.
  uint8_t swap;
  #define SWAP(x,y) swap = x; x = y; y = swap
 
  SWAP (accel_t_gyro.reg.x_accel_h, accel_t_gyro.reg.x_accel_l);
  SWAP (accel_t_gyro.reg.y_accel_h, accel_t_gyro.reg.y_accel_l);
  SWAP (accel_t_gyro.reg.z_accel_h, accel_t_gyro.reg.z_accel_l);
  SWAP (accel_t_gyro.reg.t_h, accel_t_gyro.reg.t_l);
  SWAP (accel_t_gyro.reg.x_gyro_h, accel_t_gyro.reg.x_gyro_l);
  SWAP (accel_t_gyro.reg.y_gyro_h, accel_t_gyro.reg.y_gyro_l);
  SWAP (accel_t_gyro.reg.z_gyro_h, accel_t_gyro.reg.z_gyro_l);
 
 
  // Print the raw acceleration values
 
  Serial.print(F("accel x,y,z: "));
  Serial.print(accel_t_gyro.value.x_accel, DEC);
  Serial.print(F(", "));
  Serial.print(accel_t_gyro.value.y_accel, DEC);
  Serial.print(F(", "));
  Serial.print(accel_t_gyro.value.z_accel, DEC);
  Serial.println(F(""));
 
 
  // The temperature sensor is -40 to +85 degrees Celsius.
  // It is a signed integer.
  // According to the datasheet:
  //   340 per degrees Celsius, -512 at 35 degrees.
  // At 0 degrees: -512 - (340 * 35) = -12412
 
  Serial.print(F("temperature: "));
  dT = ( (double) accel_t_gyro.value.temperature + 12412.0) / 340.0;
  Serial.print(dT, 3);
  Serial.print(F(" degrees Celsius"));
  Serial.println(F(""));
 
 
  // Print the raw gyro values.
 
  Serial.print(F("gyro x,y,z : "));
  Serial.print(accel_t_gyro.value.x_gyro, DEC);
  Serial.print(F(", "));
  Serial.print(accel_t_gyro.value.y_gyro, DEC);
  Serial.print(F(", "));
  Serial.print(accel_t_gyro.value.z_gyro, DEC);
  Serial.print(F(", "));
  Serial.println(F(""));
 
  delay(1000);
}
 
 
// --------------------------------------------------------
// MPU6050_read
//
// This is a common function to read multiple bytes
// from an I2C device.
//
// It uses the boolean parameter for Wire.endTransMission()
// to be able to hold or release the I2C-bus.
// This is implemented in Arduino 1.0.1.
//
// Only this function is used to read.
// There is no function for a single byte.
//
int MPU6050_read(int start, uint8_t *buffer, int size)
{
  int i, n, error;
 
  Wire.beginTransmission(MPU6050_I2C_ADDRESS);
  n = Wire.write(start);
  if (n != 1)
    return (-10);
 
  n = Wire.endTransmission(false);    // hold the I2C-bus
  if (n != 0)
    return (n);
 
  // Third parameter is true: relase I2C-bus after data is read.
  Wire.requestFrom(MPU6050_I2C_ADDRESS, size, true);
  i = 0;
  while(Wire.available() && i<size)
  {
    buffer[i++]=Wire.read();
  }
  if ( i != size)
    return (-11);
 
  return (0);  // return : no error
}
 
 
// --------------------------------------------------------
// MPU6050_write
//
// This is a common function to write multiple bytes to an I2C device.
//
// If only a single register is written,
// use the function MPU_6050_write_reg().
//
// Parameters:
//   start : Start address, use a define for the register
//   pData : A pointer to the data to write.
//   size  : The number of bytes to write.
//
// If only a single register is written, a pointer
// to the data has to be used, and the size is
// a single byte:
//   int data = 0;        // the data to write
//   MPU6050_write (MPU6050_PWR_MGMT_1, &c, 1);
//
int MPU6050_write(int start, const uint8_t *pData, int size)
{
  int n, error;
 
  Wire.beginTransmission(MPU6050_I2C_ADDRESS);
  n = Wire.write(start);        // write the start address
  if (n != 1)
    return (-20);
 
  n = Wire.write(pData, size);  // write data bytes
  if (n != size)
    return (-21);
 
  error = Wire.endTransmission(true); // release the I2C-bus
  if (error != 0)
    return (error);
 
  return (0);         // return : no error
}
 
// --------------------------------------------------------
// MPU6050_write_reg
//
// An extra function to write a single register.
// It is just a wrapper around the MPU_6050_write()
// function, and it is only a convenient function
// to make it easier to write a single register.
//
int MPU6050_write_reg(int reg, uint8_t data)
{
  int error;
 
  error = MPU6050_write(reg, &data, 1);
 
  return (error);
}

 

- En el Serial monitor saldrá algo así...

____________________
5.- Otro código.

http://electronics.stackexchange.com/questions/142037/calculating-angles-from-mpu6050

- Serial monitor a 9660.

Código
#include "I2Cdev.h"
#include "MPU6050.h"
#include "Wire.h"

MPU6050 accelgyro;

int16_t ax, ay, az, gx, gy, gz;

double timeStep, time, timePrev;
double arx, ary, arz, grx, gry, grz, gsx, gsy, gsz, rx, ry, rz;

int i;
double gyroScale = 131;

void setup() {

Wire.begin();
Serial.begin(9600);
accelgyro.initialize();

time = millis();

i = 1;

}

void loop() {

// set up time for integration
timePrev = time;
time = millis();
timeStep = (time - timePrev) / 1000; // time-step in s

// collect readings
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

// apply gyro scale from datasheet
gsx = gx/gyroScale; gsy = gy/gyroScale; gsz = gz/gyroScale;

// calculate accelerometer angles
arx = (180/3.141592) * atan(ax / sqrt(square(ay) + square(az))); 
ary = (180/3.141592) * atan(ay / sqrt(square(ax) + square(az)));
arz = (180/3.141592) * atan(sqrt(square(ay) + square(ax)) / az);

// set initial values equal to accel values
if (i == 1) {
grx = arx;
gry = ary;
grz = arz;
}
// integrate to find the gyro angle
else{
grx = grx + (timeStep * gsx);
gry = gry + (timeStep * gsy);
grz = grz + (timeStep * gsz);
} 

// apply filter
rx = (0.1 * arx) + (0.9 * grx);
ry = (0.1 * ary) + (0.9 * gry);
rz = (0.1 * arz) + (0.9 * grz);

// print result
Serial.print(i); Serial.print("\t");
Serial.print(timePrev); Serial.print("\t");
Serial.print(time); Serial.print("\t");
Serial.print(timeStep, 5); Serial.print("\t\t");
Serial.print(ax); Serial.print("\t");
Serial.print(ay); Serial.print("\t");
Serial.print(az); Serial.print("\t\t");
Serial.print(gx); Serial.print("\t");
Serial.print(gy); Serial.print("\t");
Serial.print(gz); Serial.print("\t\t");
Serial.print(arx); Serial.print("\t");
Serial.print(ary); Serial.print("\t");
Serial.print(arz); Serial.print("\t\t");
Serial.print(grx); Serial.print("\t");
Serial.print(gry); Serial.print("\t");
Serial.print(grz); Serial.print("\t\t");
Serial.print(rx); Serial.print("\t");
Serial.print(ry); Serial.print("\t");
Serial.println(rz);

i = i + 1;
delay(50);

}

____________________
6.- Otro código. Ángulo del giroscopio.

Código
#include <Wire.h>
 
//Direccion I2C de la IMU
#define MPU 0x68
 
//Ratios de conversion
#define A_R 16384.0
#define G_R 131.0
 
//Conversion de radianes a grados 180/PI
#define RAD_A_DEG = 57.295779
 
//MPU-6050 da los valores en enteros de 16 bits
//Valores sin refinar
int16_t AcX, AcY, AcZ, GyX, GyY, GyZ;
 
//Angulos
float Acc[2];
float Gy[2];
float Angle[2];

void setup()
{
Wire.begin();
Wire.beginTransmission(MPU);
Wire.write(0x6B);
Wire.write(0);
Wire.endTransmission(true);
Serial.begin(9600);
}

void loop()
{
//Leer los valores del Acelerometro de la IMU
Wire.beginTransmission(MPU);
Wire.write(0x3B); //Pedir el registro 0x3B - corresponde al AcX
Wire.endTransmission(false);
Wire.requestFrom(MPU,6,true); //A partir del 0x3B, se piden 6 registros
AcX=Wire.read()<<8|Wire.read(); //Cada valor ocupa 2 registros
AcY=Wire.read()<<8|Wire.read();
AcZ=Wire.read()<<8|Wire.read();

//Se calculan los angulos Y, X respectivamente.
Acc[1] = atan(-1*(AcX/A_R)/sqrt(pow((AcY/A_R),2) + pow((AcZ/A_R),2)))*RAD_TO_DEG;
Acc[0] = atan((AcY/A_R)/sqrt(pow((AcX/A_R),2) + pow((AcZ/A_R),2)))*RAD_TO_DEG;

//Leer los valores del Giroscopio
Wire.beginTransmission(MPU);
Wire.write(0x43);
Wire.endTransmission(false);
Wire.requestFrom(MPU,4,true); //A diferencia del Acelerometro, solo se piden 4 registros
GyX=Wire.read()<<8|Wire.read();
GyY=Wire.read()<<8|Wire.read();

//Calculo del angulo del Giroscopio
Gy[0] = GyX/G_R;
Gy[1] = GyY/G_R;

//Aplicar el Filtro Complementario
Angle[0] = 0.98 *(Angle[0]+Gy[0]*0.010) + 0.02*Acc[0];
Angle[1] = 0.98 *(Angle[1]+Gy[1]*0.010) + 0.02*Acc[1];

//Mostrar los valores por consola
Serial.print("Angle X: "); Serial.print(Angle[0]); Serial.print("\n");
Serial.print("Angle Y: "); Serial.print(Angle[1]); Serial.print("\n------------\n");

delay(1000); //Nuestra dt sera, pues, 0.010, que es el intervalo de tiempo en cada medida
}

- En el Serial monitor saldrá algo así...

Angle X: 19.99
Angle Y: -49.32

____________________
7.- Otro circuito.

https://github.com/TKJElectronics/Example-Sketch-for-IMU-including-Kalman-filter/blob/master/IMU/MPU6050/MPU6050.ino

____________________
8.- Código que viene en el ejemplo de la librería MPU6050.

- Es necesario cargar la librería #include "I2Cdev.h"

- I2Cdev.zip

- Para el funcionamiento de este código debemos además conectar el terminal de interrupción INT de módulo con el terminal 2 de Arduino.

Código
// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class using DMP (MotionApps v2.0)
// 6/21/2012 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
//     2012-06-21 - added note about Arduino 1.0.1 + Leonardo compatibility error
//     2012-06-20 - improved FIFO overflow handling and simplified read process
//     2012-06-19 - completely rearranged DMP initialization code and simplification
//     2012-06-13 - pull gyro and accel data from FIFO packet instead of reading directly
//     2012-06-09 - fix broken FIFO read sequence and change interrupt detection to RISING
//     2012-06-05 - add gravity-compensated initial reference frame acceleration output
//                - add 3D math helper file to DMP6 example sketch
//                - add Euler output and Yaw/Pitch/Roll output formats
//     2012-06-04 - remove accel offset clearing for better results (thanks Sungon Lee)
//     2012-06-01 - fixed gyro sensitivity to be 2000 deg/sec instead of 250
//     2012-05-30 - basic DMP initialization working

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#include "Wire.h"

// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file

// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;

/* =========================================================================
   NOTE: In addition to connection 3.3v, GND, SDA, and SCL, this sketch
   depends on the MPU-6050's INT pin being connected to the Arduino's
   external interrupt #0 pin. On the Arduino Uno and Mega 2560, this is
   digital I/O pin 2.
 * ========================================================================= */

/* =========================================================================
   NOTE: Arduino v1.0.1 with the Leonardo board generates a compile error
   when using Serial.write(buf, len). The Teapot output uses this method.
   The solution requires a modification to the Arduino USBAPI.h file, which
   is fortunately simple, but annoying. This will be fixed in the next IDE
   release. For more info, see these links:

   http://arduino.cc/forum/index.php/topic,109987.0.html
   http://code.google.com/p/arduino/issues/detail?id=958
 * ========================================================================= */



// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a [w, x, y, z] format (not best for parsing
// on a remote host such as Processing or something though)
//#define OUTPUT_READABLE_QUATERNION

// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER

// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
#define OUTPUT_TEAPOT



#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };



// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}



// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================

void setup() {
    // join I2C bus (I2Cdev library doesn't do this automatically)
    Wire.begin();

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial.begin(115200);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio
    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.

    // initialize device
    Serial.println(F("Initializing I2C devices..."));
    mpu.initialize();

    // verify connection
    Serial.println(F("Testing device connections..."));
    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
    Serial.println(F("\nSend any character to begin DMP programming and demo: "));
    while (Serial.available() && Serial.read()); // empty buffer
    while (!Serial.available());                 // wait for data
    while (Serial.available() && Serial.read()); // empty buffer again

    // load and configure the DMP
    Serial.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();
    
    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);

        // enable Arduino interrupt detection
        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(0, dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();

        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial.print(F("DMP Initialization failed (code "));
        Serial.print(devStatus);
        Serial.println(F(")"));
    }

    // configure LED for output
    pinMode(LED_PIN, OUTPUT);
}



// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void loop() {
    // if programming failed, don't try to do anything
    if (!dmpReady) return;

    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();

    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        Serial.println(F("FIFO overflow!"));

    // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

        #ifdef OUTPUT_READABLE_QUATERNION
            // display quaternion values in easy matrix form: w x y z
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            Serial.print("quat\t");
            Serial.print(q.w);
            Serial.print("\t");
            Serial.print(q.x);
            Serial.print("\t");
            Serial.print(q.y);
            Serial.print("\t");
            Serial.println(q.z);
        #endif

        #ifdef OUTPUT_READABLE_EULER
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetEuler(euler, &q);
            Serial.print("euler\t");
            Serial.print(euler[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(euler[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(euler[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_YAWPITCHROLL
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
            Serial.print("ypr\t");
            Serial.print(ypr[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(ypr[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(ypr[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_REALACCEL
            // display real acceleration, adjusted to remove gravity
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            Serial.print("areal\t");
            Serial.print(aaReal.x);
            Serial.print("\t");
            Serial.print(aaReal.y);
            Serial.print("\t");
            Serial.println(aaReal.z);
        #endif

        #ifdef OUTPUT_READABLE_WORLDACCEL
            // display initial world-frame acceleration, adjusted to remove gravity
            // and rotated based on known orientation from quaternion
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
            Serial.print("aworld\t");
            Serial.print(aaWorld.x);
            Serial.print("\t");
            Serial.print(aaWorld.y);
            Serial.print("\t");
            Serial.println(aaWorld.z);
        #endif
    
        #ifdef OUTPUT_TEAPOT
            // display quaternion values in InvenSense Teapot demo format:
            teapotPacket[2] = fifoBuffer[0];
            teapotPacket[3] = fifoBuffer[1];
            teapotPacket[4] = fifoBuffer[4];
            teapotPacket[5] = fifoBuffer[5];
            teapotPacket[6] = fifoBuffer[8];
            teapotPacket[7] = fifoBuffer[9];
            teapotPacket[8] = fifoBuffer[12];
            teapotPacket[9] = fifoBuffer[13];
            Serial.write(teapotPacket, 14);
            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
        #endif

        // blink LED to indicate activity
        blinkState = !blinkState;
        digitalWrite(LED_PIN, blinkState);
    }
}

____________________
9.- Otro código más, este se ve en pantalla LCD.

- Muestra el Pitch y el Roll con estabilidad.

https://www.youtube.com/watch?v=4BoIE8YQwM8

Código
///////////////////////////////////////////////////////////////////////////////////////
/*Terms of use
///////////////////////////////////////////////////////////////////////////////////////
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
//THE SOFTWARE.


///////////////////////////////////////////////////////////////////////////////////////
//Support
///////////////////////////////////////////////////////////////////////////////////////
Website: http://www.brokking.net/imu.html
Youtube: https://youtu.be/4BoIE8YQwM8
Version: 1.0 (May 5, 2016)

///////////////////////////////////////////////////////////////////////////////////////
//Connections
///////////////////////////////////////////////////////////////////////////////////////
Power (5V) is provided to the Arduino pro mini by the FTDI programmer

Gyro - Arduino pro mini
VCC  -  5V
GND  -  GND
SDA  -  A4
SCL  -  A5

LCD  - Arduino pro mini
VCC  -  5V
GND  -  GND
SDA  -  A4
SCL  -  A5
*//////////////////////////////////////////////////////////////////////////////////////

//Include LCD and I2C library
#include <LiquidCrystal_I2C.h>
#include <Wire.h>

  
// LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

//Declaring some global variables
int gyro_x, gyro_y, gyro_z;
long acc_x, acc_y, acc_z, acc_total_vector;
int temperature;
long gyro_x_cal, gyro_y_cal, gyro_z_cal;
long loop_timer;
int lcd_loop_counter;
float angle_pitch, angle_roll;
int angle_pitch_buffer, angle_roll_buffer;
boolean set_gyro_angles;
float angle_roll_acc, angle_pitch_acc;
float angle_pitch_output, angle_roll_output;

//Initialize the LCD library
//LiquidCrystal_I2C lcd(0x27,16,2);




void setup() {
  Wire.begin();                                                        //Start I2C as master
  //Serial.begin(57600);                                               //Use only for debugging
  pinMode(13, OUTPUT);                                                 //Set output 13 (LED) as output
  
  setup_mpu_6050_registers();                                          //Setup the registers of the MPU-6050 (500dfs / +/-8g) and start the gyro

  digitalWrite(13, HIGH);                                              //Set digital output 13 high to indicate startup

  lcd.begin(16,2);                                                         //Initialize the LCD
  lcd.backlight();                                                     //Activate backlight
  lcd.clear();                                                         //Clear the LCD

  lcd.setCursor(0,0);                                                  //Set the LCD cursor to position to position 0,0
  lcd.print("  MPU-6050 IMU");                                         //Print text to screen
  lcd.setCursor(0,1);                                                  //Set the LCD cursor to position to position 0,1
  lcd.print("     V1.0");                                              //Print text to screen

  delay(1500);                                                         //Delay 1.5 second to display the text
  lcd.clear();                                                         //Clear the LCD
  
  lcd.setCursor(0,0);                                                  //Set the LCD cursor to position to position 0,0
  lcd.print("Calibrating gyro");                                       //Print text to screen
  lcd.setCursor(0,1);                                                  //Set the LCD cursor to position to position 0,1
  for (int cal_int = 0; cal_int < 2000 ; cal_int ++){                  //Run this code 2000 times
    if(cal_int % 125 == 0)lcd.print(".");                              //Print a dot on the LCD every 125 readings
    read_mpu_6050_data();                                              //Read the raw acc and gyro data from the MPU-6050
    gyro_x_cal += gyro_x;                                              //Add the gyro x-axis offset to the gyro_x_cal variable
    gyro_y_cal += gyro_y;                                              //Add the gyro y-axis offset to the gyro_y_cal variable
    gyro_z_cal += gyro_z;                                              //Add the gyro z-axis offset to the gyro_z_cal variable
    delay(3);                                                          //Delay 3us to simulate the 250Hz program loop
  }
  gyro_x_cal /= 2000;                                                  //Divide the gyro_x_cal variable by 2000 to get the avarage offset
  gyro_y_cal /= 2000;                                                  //Divide the gyro_y_cal variable by 2000 to get the avarage offset
  gyro_z_cal /= 2000;                                                  //Divide the gyro_z_cal variable by 2000 to get the avarage offset

  lcd.clear();                                                         //Clear the LCD
  
  lcd.setCursor(0,0);                                                  //Set the LCD cursor to position to position 0,0
  lcd.print("Pitch:");                                                 //Print text to screen
  lcd.setCursor(0,1);                                                  //Set the LCD cursor to position to position 0,1
  lcd.print("Roll :");                                                 //Print text to screen
  
  digitalWrite(13, LOW);                                               //All done, turn the LED off
  
  loop_timer = micros();                                               //Reset the loop timer
}

void loop(){

  read_mpu_6050_data();                                                //Read the raw acc and gyro data from the MPU-6050

  gyro_x -= gyro_x_cal;                                                //Subtract the offset calibration value from the raw gyro_x value
  gyro_y -= gyro_y_cal;                                                //Subtract the offset calibration value from the raw gyro_y value
  gyro_z -= gyro_z_cal;                                                //Subtract the offset calibration value from the raw gyro_z value
  
  //Gyro angle calculations
  //0.0000611 = 1 / (250Hz / 65.5)
  angle_pitch += gyro_x * 0.0000611;                                   //Calculate the traveled pitch angle and add this to the angle_pitch variable
  angle_roll += gyro_y * 0.0000611;                                    //Calculate the traveled roll angle and add this to the angle_roll variable
  
  //0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians
  angle_pitch += angle_roll * sin(gyro_z * 0.000001066);               //If the IMU has yawed transfer the roll angle to the pitch angel
  angle_roll -= angle_pitch * sin(gyro_z * 0.000001066);               //If the IMU has yawed transfer the pitch angle to the roll angel
  
  //Accelerometer angle calculations
  acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z));  //Calculate the total accelerometer vector
  //57.296 = 1 / (3.142 / 180) The Arduino asin function is in radians
  angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296;       //Calculate the pitch angle
  angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296;       //Calculate the roll angle
  
  //Place the MPU-6050 spirit level and note the values in the following two lines for calibration
  angle_pitch_acc -= 0.0;                                              //Accelerometer calibration value for pitch
  angle_roll_acc -= 0.0;                                               //Accelerometer calibration value for roll

  if(set_gyro_angles){                                                 //If the IMU is already started
    angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004;     //Correct the drift of the gyro pitch angle with the accelerometer pitch angle
    angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004;        //Correct the drift of the gyro roll angle with the accelerometer roll angle
  }
  else{                                                                //At first start
    angle_pitch = angle_pitch_acc;                                     //Set the gyro pitch angle equal to the accelerometer pitch angle 
    angle_roll = angle_roll_acc;                                       //Set the gyro roll angle equal to the accelerometer roll angle 
    set_gyro_angles = true;                                            //Set the IMU started flag
  }
  
  //To dampen the pitch and roll angles a complementary filter is used
  angle_pitch_output = angle_pitch_output * 0.9 + angle_pitch * 0.1;   //Take 90% of the output pitch value and add 10% of the raw pitch value
  angle_roll_output = angle_roll_output * 0.9 + angle_roll * 0.1;      //Take 90% of the output roll value and add 10% of the raw roll value
  
  write_LCD();                                                         //Write the roll and pitch values to the LCD display

  while(micros() - loop_timer < 4000);                                 //Wait until the loop_timer reaches 4000us (250Hz) before starting the next loop
  loop_timer = micros();                                               //Reset the loop timer
}


void read_mpu_6050_data(){                                             //Subroutine for reading the raw gyro and accelerometer data
  Wire.beginTransmission(0x68);                                        //Start communicating with the MPU-6050
  Wire.write(0x3B);                                                    //Send the requested starting register
  Wire.endTransmission();                                              //End the transmission
  Wire.requestFrom(0x68,14);                                           //Request 14 bytes from the MPU-6050
  while(Wire.available() < 14);                                        //Wait until all the bytes are received
  acc_x = Wire.read()<<8|Wire.read();                                  //Add the low and high byte to the acc_x variable
  acc_y = Wire.read()<<8|Wire.read();                                  //Add the low and high byte to the acc_y variable
  acc_z = Wire.read()<<8|Wire.read();                                  //Add the low and high byte to the acc_z variable
  temperature = Wire.read()<<8|Wire.read();                            //Add the low and high byte to the temperature variable
  gyro_x = Wire.read()<<8|Wire.read();                                 //Add the low and high byte to the gyro_x variable
  gyro_y = Wire.read()<<8|Wire.read();                                 //Add the low and high byte to the gyro_y variable
  gyro_z = Wire.read()<<8|Wire.read();                                 //Add the low and high byte to the gyro_z variable

}

void write_LCD(){                                                      //Subroutine for writing the LCD
  //To get a 250Hz program loop (4us) it's only possible to write one character per loop
  //Writing multiple characters is taking to much time
  if(lcd_loop_counter == 14)lcd_loop_counter = 0;                      //Reset the counter after 14 characters
  lcd_loop_counter ++;                                                 //Increase the counter
  if(lcd_loop_counter == 1){
    angle_pitch_buffer = angle_pitch_output * 10;                      //Buffer the pitch angle because it will change
    lcd.setCursor(6,0);                                                //Set the LCD cursor to position to position 0,0
  }
  if(lcd_loop_counter == 2){
    if(angle_pitch_buffer < 0)lcd.print("-");                          //Print - if value is negative
    else lcd.print("+");                                               //Print + if value is negative
  }
  if(lcd_loop_counter == 3)lcd.print(abs(angle_pitch_buffer)/1000);    //Print first number
  if(lcd_loop_counter == 4)lcd.print((abs(angle_pitch_buffer)/100)%10);//Print second number
  if(lcd_loop_counter == 5)lcd.print((abs(angle_pitch_buffer)/10)%10); //Print third number
  if(lcd_loop_counter == 6)lcd.print(".");                             //Print decimal point
  if(lcd_loop_counter == 7)lcd.print(abs(angle_pitch_buffer)%10);      //Print decimal number

  if(lcd_loop_counter == 8){
    angle_roll_buffer = angle_roll_output * 10;
    lcd.setCursor(6,1);
  }
  if(lcd_loop_counter == 9){
    if(angle_roll_buffer < 0)lcd.print("-");                           //Print - if value is negative
    else lcd.print("+");                                               //Print + if value is negative
  }
  if(lcd_loop_counter == 10)lcd.print(abs(angle_roll_buffer)/1000);    //Print first number
  if(lcd_loop_counter == 11)lcd.print((abs(angle_roll_buffer)/100)%10);//Print second number
  if(lcd_loop_counter == 12)lcd.print((abs(angle_roll_buffer)/10)%10); //Print third number
  if(lcd_loop_counter == 13)lcd.print(".");                            //Print decimal point
  if(lcd_loop_counter == 14)lcd.print(abs(angle_roll_buffer)%10);      //Print decimal number
}

void setup_mpu_6050_registers(){
  //Activate the MPU-6050
  Wire.beginTransmission(0x68);                                        //Start communicating with the MPU-6050
  Wire.write(0x6B);                                                    //Send the requested starting register
  Wire.write(0x00);                                                    //Set the requested starting register
  Wire.endTransmission();                                              //End the transmission
  //Configure the accelerometer (+/-8g)
  Wire.beginTransmission(0x68);                                        //Start communicating with the MPU-6050
  Wire.write(0x1C);                                                    //Send the requested starting register
  Wire.write(0x10);                                                    //Set the requested starting register
  Wire.endTransmission();                                              //End the transmission
  //Configure the gyro (500dps full scale)
  Wire.beginTransmission(0x68);                                        //Start communicating with the MPU-6050
  Wire.write(0x1B);                                                    //Send the requested starting register
  Wire.write(0x08);                                                    //Set the requested starting register
  Wire.endTransmission();                                              //End the transmission
}

____________________
11.- Otro código con otra librería.

- Librería: MPU6050_tockn-master.zip

- Para calibrarlo descomentamos esta línea y observamos el SerialMonitor

mpu6050.calcGyroOffsets(true);

- Una vez visto los valores de calibración los ponemos aquí, ejemplo:

mpu6050.setGyroOffsets(1.45, 1.23, -1.32);

giroscopio_BT.ino

#include <MPU6050_tockn.h>
#include <Wire.h>
MPU6050 mpu6050(Wire);

void setup() {
  Serial.begin(9600);
  Wire.begin();
  mpu6050.begin();
  // mpu6050.calcGyroOffsets(true); 
}

void loop() {
    mpu6050.update();

    Serial.print(mpu6050.getAccX());
    Serial.print("|");
    Serial.print(mpu6050.getAccY());
    Serial.print("|");
    Serial.print(mpu6050.getAccY());
    Serial.print("\n"); // Fin de línea.  

  delay(100);
 }

- Se pueden obtener todos estos datos, aunque en este ejemplo solo visualizamos los getAccX, Y y Z

mpu6050.getTemp()
mpu6050.getAccX()
mpu6050.getAccY()
mpu6050.getAccZ()


mpu6050.getGyroX()
mpu6050.getGyroY()
mpu6050.getGyroZ()

mpu6050.getAccAngleX()
mpu6050.getAccAngleY()

mpu6050.getGyroAngleX()
mpu6050.getGyroAngleY()
mpu6050.getGyroAngleZ()

mpu6050.getAngleX()
mpu6050.getAngleY()
mpu6050.getAngleZ()

____________________
10.- Filtro Kalman.

https://github.com/TKJElectronics/KalmanFilter

Librería Kalman.

En el ejemplo MPU6050 viene como configurar los g y los grados por segundos.

TWBR = ((F_CPU / 400000L) - 16) / 2; // Set I2C frequency to 400kHz

  i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
  i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
  i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
  i2cData[3] = 0x02; // Set Accelerometer Full Scale Range ( ±2g = 0x00 ±4g=0x01 ±8g=0x02, ±16g = 0x03 )
  while (i2cWrite(0x19, i2cData, 4, false)); // Write to all four registers at once
  while (i2cWrite(0x6B, 0x01, true)); // PLL with X axis gyroscope reference and disable sleep mode
____________________

11.- Processing.

Processing es un programa similar al IDE del Arduino, pero se puede visualizar valores estáticos y dibujos.

http://hetpro-store.com/TUTORIALES/acelerometro-mpu-6050-6dof/

http://www.varesano.net/blog/fabio/initial-tests-freeimu-v04-and-mpu6050

http://www.varesano.net/projects/hardware/FreeIMU

http://bildr.org/2012/03/stable-orientation-digital-imu-6dof-arduino/

http://diyhacking.com/arduino-mpu-6050-imu-sensor-tutorial/

http://www.jarzebski.pl/arduino/czujniki-i-sensory/3-osiowy-zyroskop-l3g4200d.html otro chip el L3G4200

https://www.diarioelectronicohoy.com/blog/configurar-el-mpu6050 (ajuste)

https://robologs.net/2014/10/15/tutorial-de-arduino-y-mpu-6050/

https://medium.com/@kavindugimhanzoysa/lets-work-with-mpu6050-gy-521-part1-6db0d47a35e6 (Programa º/s y g)

https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf

http://forum.arduino.cc/index.php?topic=339349.15

http://eeenthusiast.com/arduino-accelerometer-gyroscope-tutorial-mpu-6050/ (y video)

________________________________

- Mi correo:
juana1991@yahoo.com
- KIO4.COM - Política de cookies. Textos e imágenes propiedad del autor:
© Juan A. Villalpando
No se permite la copia de información ni imágenes.
Usamos cookies propias y de terceros que entre otras cosas recogen datos sobre sus hábitos de navegación y realizan análisis de uso de nuestro sitio.
Si continúa navegando consideramos que acepta su uso. Acepto    Más información